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A new boundary element model for simulating the interaction of one or more
bubbles and a free surface is described. An important feature of this model is the
utilization of a nine-noded Lagrangian interpolation for the computation of surface
characteristics and material velocity. Solid angles on the free surface are computed
via a direct approach, as opposed to the indirect approach usually employed for closed
surfaces. The evolution of the bubble is followed until the point before the reentrant jet
impacts on the opposite wall of the bubble. The results of the 3D code are compared
against those of a one-dimensional Rayleigh–Plesset model and an axisymmetric
code. New results are presented for the interaction of two bubbles and a free surface,
where fully three-dimensional features are expected.c© 1998 Academic Press
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1. INTRODUCTION

In the area of bubbles dynamics, which has important applications in a number of engi-
neering fields such as cavitation and underwater explosions, the most successful approach
so far is the boundary element method (BEM) based on the Green’s direct representation
[11], coupled with some time-stepping scheme. One of the key issues in the implementation
of this direct formulation is the accurate determination of the material velocity of the sur-
faces, following the solution of the boundary-integral equation. The problem is presented
by the nonsmooth nature of the discretized surface, which entails the use of a local or global
surface interpolation scheme to define the normal direction and tangential plane. Previous
works on 3D bubble dynamics can be reviewed in this light. Harris [1] used an averaging
of linear approximations on the surface elements. But as noted by Blakeet al. [2], this
algorithm suffers from the nonconvergence problem under the mesh refinement. Chahine
et al. [3, 4] used quadratic polynomials to fit the surface locally, but his method fails for
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certain arrangements of the nodes such as a sphere for which the coefficient matrix is not
of full rank (cf. [2]). Following this line, Blakeet al. [2] proposed a number of local inter-
polation functions, one of which, the radial basis functions, was claimed to be universally
applicable. However, even for this type of shape functions, the local interpolating surfaces
has the form ofz= f (x, y), where(x, y, z) are the coordinates of a Cartesian frame. For
certain points, when the bubble surface is parallel or nearly parallel to thez-axis, this would
render the mapping singular or nearly singular. To overcome this problem, the Cartesian
frame would have to be reorientated to keep the interpolating map locally diffeomorphic.
This may be cumbersome, especially in some complicated cases involving the interaction
of multiple bubbles, structures, and free surfaces where one does not knowa priori when
and which part of the moving surfaces would become parallel to thez-axis. In this regard,
Zinchenkoet al. [5] utilized a local Cartesian frame, obtained from an iterative method,
with the z-axis pointing in the normal direction. A least-square method was then used to
fit the local surface with quadratic functions. This method, however, becomes less accurate
when the number of neighboring nodes far exceeds 4. Other 3D studies include those of
Wilkerson [6], Chahine [7], Harris [8], Blake and Tong [9] and Chenet al. [10].

An alternative scheme of surface interpolation is employed in this paper to compute the
material velocity of the bubble surface. Local interpolation is carried out via the shape
functions of a 9-noded Lagrangian element. Such element has been used by Brebbia
et al. [11] and others in the context of other BEM applications. The interpolant is trivariate
in nature and may be applied in a uniform fashion to any local surface patch regardless of
the orientation of the latter to the global axes. Moreover, with this interpolation algorithm,
we are also able to obtain the material velocity (all its Cartesian components) of the surface
directly, instead of calculating its normal and tangential component separately, as previous
authors have done. The convergence of the algorithm is verified with a bubble of spherical
symmetry.

Then we incorporate this algorithm into a 3D BEM code to study the interaction of
bubbles and a free surface. We also propose an effective direct procedure for computing
the nodal solid angles on the free surface. For axisymmetric cases, our results compare
favorably with those from an axisymmetric model. Finally, we present the results of two
cases in which 3D effects are dominant. For brevity, only the results for cavitation bubbles
are presented in this paper although the extension of the current model to gas-filled bubbles
is straightforward.

2. MATHEMATICAL FORMULATION

The most fundamental assumption used here is that the fluid is inviscid and incompress-
ible and the induced motion irrotational. Therefore a potential functionφ(x, y, z) exists
in the region occupied by the fluid, which is bounded by some bubbles and a free sur-
face. A Cartesian co-ordinate systemOxyzis used with theOxyplane coinciding with the
undisturbed free surface. Then the Green’s second identity reads

c(P)φ(P) +
∫

S

[
φ(Q)

∂G(P, Q)

∂n(Q)
− ∂φ(Q)

∂n(Q)
G(P, Q)

]
dS(Q) = 0, (1)

whereP = (x, y, z) is the control point,Q = (x′, y′, z′) is the integration point,G(P, Q) =
| EP Q|−1 is the free space Green’s function,c(P) is a geometrical parameter associated with



            

3D BUBBLES NEARS A FREE SURFACE 107

the solid angle (which is the conventional internal angle in 2D cases),n is the unit normal
pointing out of the fluid region, andS is the sum of all boundaries which are discretized
into triangular elements. Linear interpolation is used for the potential function and its
normal derivative (Brebbiaet al. [11]). The discretization scheme on the initially spherical
bubbles and the quadrature used for the integration of the surface integral can be found in
Wilkerson [6].

For cavitation bubbles, the evolution equations are

Dr
Dt

= ∇φ, (2)

Dφ

Dt
= 1

2
|∇φ|2 − gzon the free surface, (3)

Dφ

Dt
= p∞ − pc

ρ
+ 1

2
|∇φ|2 − g(z − γ ′) on a bubble surface, (4)

where the terms on the left-hand side are material derivatives,r = (x, y, z) is the position
vector,∇ is the gradient operator,g is the gravitational acceleration,pc is the constant
pressure inside the bubble. The center of the spherical bubble at inception is on the plane
z= γ ′ andp∞ is the ambient pressure on this plane. In addition, a boundary condition must
be prescribed in the far field:

φ → 0, r =
√

x2 + y2 + z2 → ∞. (5)

We then proceed to nondimensionalize variables with the length scale beingRm (maxi-
mum radius of one of the bubbles) and the time scale beingRm

√
ρ/(p∞ − pc). The non-

dimensionalized Bernoulli equations then become

Dφ

Dt
= 1

2
|∇φ|2 − δ2z on the free surface, (6)

Dφ

Dt
= 1 + 1

2
|∇φ|2 − δ2(z − γ ) on the bubble surface, (7)

with δ = [ρgRm/(p∞−pc)]1/2 being the buoyancy parameter. We have neglected the surface
tension effects in the above formulation for the sake of simplicity. Blakeet al. [15] have
noted that for large bubbles (millimeter or larger), the surface tension effects are generally
insignificant over much of the bubble’s lifetime. For very small bubbles, surface tension
effects can be significant and in this case, the above formulation should be modified to
accommodate the effects if necessary.

The initial conditions are derived by integrating the Rayleigh–Plesset equation from the
time of inception to the time when the bubble growth is arrested. For cavitation bubbles,
the initial value of the potential on the bubble, whose radius is assumed to be1

10 of the
maximum radius, is given by (cf. [16])

φ(t0) = −2.58 att0 = 0.0015527. (8)

2.1. Calculation of Material Velocity

It can be seen from (2) to (4) that the material velocity is needed to advance the solution.
As stated in Section 1, a number of local interpolation schemes have been proposed, but
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FIG. 1. Nine-noded Lagrangian element and the local curvilinear system(σ, τ ).

none of them are fully satisfactory. Here we make use of the interpolation functions used in
the nine-noded Lagrangian element (Brebbiaet al. [11]). Referring to Fig. 1, the quadratic
surface that passes through all the nine nodes and the interpolation functions associated
with each node are given in terms of the curvilinear coordinates (σ, τ ) as

r =
9∑

i =1

fi r i , (9)

u =
9∑

i =1

fi ui , (10)

f1 = 1

4
σ(σ − 1)τ (τ − 1), (11)

f2 = 1

2
(1 − σ 2)τ (τ − 1), (12)

f3 = 1

4
σ(σ + 1)τ (τ − 1), (13)

f4 = 1

2
σ(σ − 1)(1 − τ 2), (14)

f5 = (1 − σ 2)(1 − τ 2), (15)

f6 = 1

2
σ(σ + 1)(1 − τ 2), (16)

f7 = 1

4
σ(σ − 1)τ (τ + 1), (17)

f8 = 1

2
(1 − σ 2)τ (τ + 1), (18)

f9 = 1

4
σ(σ + 1)τ (τ + 1), (19)

where r and r i are position vectors,u is any scalar function defined locally. It can be
verified that fi ( j ) = δi j (1 ≤ i, j ≤ 9) with δi j being the Kronecker delta, wherej denotes
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the j -node, and that
∑9

i =1 fi = 1, which means that there is no interpolation error foru, if
u is a linear function ofx, y, z, and for the fitted surface, if all the nine nodes are coplanar.
With the scheme, a local curvilinear frame is automatically conferred to the nodal points
in question via the standard element. Therefore no explicit construction or selection of
reference frame for interpolation is required. It should also be noted that the nine nodes
need not be distinct.

Suppose that the velocity at the central node 5 is required. Then we have the relations for
the derivatives along two tangential directions and the normal direction,

uxσ + vyσ + wzσ = ∂φ

∂σ

uxτ + vyτ + wzτ = ∂φ

∂τ

unx + vny + wnz = ∂φ

∂n

 atσ = τ = 0, (20)

whereu, v, andw are the Cartesian components of the velocity vector. The coefficients
(xσ , yσ , zσ ) = 1

2(x6 − x4, y6 − y4, z6 − z4) = 1
2AB, (xτ , yτ , zτ ) = 1

2(x8 − x2, y8 − y2, z8 −
z2) = 1

2CD, and ∂φ

∂σ
= (φ6 − φ4)/2, ∂φ

∂τ
= (φ8 − φ2)/2 are the velocities along the direc-

tion σ andτ ; ∂φ/∂n is obtained from the solution of the boundary integral equation, and
the normal vectorn = ±AB × CD (the sign is chosen such thatn is outward normal),
(nx, ny, nz) = n/|n|. Solving Eqs. (20) gives the material velocity vector(u, v, w) of the
surface directly. Therefore, unlike previous models (e.g., Blakeet al. [2]), where the normal
and tangential velocities were calculated separately with the tangential velocity being com-
puted by further assumptions and approximations, our method allows the three components
of the material velocity to be computed simultaneously in a consistent and unambiguous
fashion. It can be shown that the determinant of the coefficient matrix is±|n|/4, and thus,
the linear system has a solution if|n| 6= 0.

Depending on the location of a node on the surface, there may be five or six elements
surrounding the node, and thus lumping or addition of nodes is frequently necessary. These
two situations are illustrated in Fig. 2, together with our arrangement of the Lagrangian
nodes 1–9. The values of the potential function at the added Lagrangian nodes are found by
linear interpolation, which is consistent with the linear interpolation used in each element.
Node lumping or element degeneration is an accepted practice for functional interpolation
[17]. It can produce singularities for the first derivatives at the lumped nodes, but the
interpolant is first-order smooth away from the degenerated nodes. Since the surface point
in question is the central node 5, which is never lumped with other nodes, a locally smooth
and regular surface is expected around this node.

While element degeneration may sometimes have adverse effect on accuracy, it does
not, however, decrease the formalorder of accuracyof the interpolants, which remains
second-order. Therefore, grid convergence to the solution is not affected by lumping of
nodes. Interpolation inaccuracy may also arise when the mesh around the central node is
highly distorted. But this is true of all methods, since the results of a procedure may only
be as accurate as the regularity of data allows. Loss of accuracy due to mesh distortion,
however, may be rectified, if necessary, by suitable mesh refinement.

Since the value of the potential function within each element is defined based on a
linear interpolation of its nodal values, first-order convergence for the computed velocities
is therefore expected. While the linear interpolation ofφ appears to be adequate for the
present study, the nine-noded Lagrangian interpolant may also be extended to the potential
function in the usual isoparametric manner.
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FIG. 2. Two outlines of the local nodes used in the local interpolation scheme and the designated numbers
corresponding to a Lagrangian element: “o,” original nodes; “×,” added Lagrangian nodes. The nodes may not be
coplanar.

2.2. Time Stepping

We adopt a forward-difference scheme for the time stepping. The time step, however,
needs to be carefully chosen to curb the instability and truncation errors. Unlike axisym-
metric cases where the sawtooth instability is commonly present, the 3D time stepping was
found to be quite stable. Only when the jet is fully developed and comes very close to the
opposite wall of the bubble did we encounter some numerical instability.

Stability is not the only concern in a numerical scheme; the time step must be carefully
chosen such that the truncation errors will be kept small. Gibson and Blake [12] proposed
that the time step be chosen in such a way that the maximum change of the potentialφ in
each time step is restricted by a constant1φ. Here we use a criterion slightly different from
that of Chahine and Duraiswami [13] that the maximum change of the length of each side
of the triangular elements is restricted by certain percentageε (= 4% in this paper).

To validate the new criterion, we first compare the performance of the two aforementioned
criteria to choose the time step. Shown in Fig. 3 are the results for the interaction between one
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FIG. 3. Comparison of the bubble and free surface shapes forγ = 1 andδ = 0 at t = 1.4206 calculated from
our method of choosing time step with a toleranceε = 4% (dash lines), from Gibson and Blake’s method with
1φ = 0.04 (circles), and from an axisymmetric model in Wanget al. (solid lines).

bubble and a free surface. It is seen that the final results, including the jet configuration and
the free-surface hump, are of similar accuracy and compare well with the results generated
from the axisymmetric code of Wanget al. [14]. But with the new criterion 5% CPU time
is saved. Although the saving in this case is only marginal, our test run for the interaction
between a bubble and a solid wall indicates that more than 50% CPU time is saved with
the new criterion. The reason for this is that, for the latter case, the time steps calculated
from the new criterion are unusually large when the bubble grows closer to its maximum
volume (with small material velocities); on the other hand, in the case of a bubble and a
free surface, the motion on the free surface has significantly reduced the time steps when
the bubble volume is close to its maximum. The saving of CPU time is greatly appreciated
since for cases involving multiple bubbles and a free surface the CPU time may run up to
several days on a Cray J916 computer system because of the large number of nodes involved
in the computation.

2.3. Calculation of Solid Angles on the Free Surface

When a free surface is present, we encounter another difficulty, i.e. the calculation of the
solid anglec(P). For a closed surface, one can always calculate it via other entries of the
influence matrix (cf. Brebbiaet al. [11]). But the free surface is not closed. Of course, one
way to circumvent this hurdle is to add some artificial surfaces to the free surface to render
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FIG. 4. (a) The part of a sphere contained in a corner. (b) A spherical triangle.

it a closed surface. But we found that in order to maintain a reasonable accuracy the size
of the elements on the free surface and the artificial surfaces must be kept small so that
the numerical integration will not introduce large errors. This will be very uneconomical
in terms of computational time, and we do not wish to waste a lot of elements in the far
field where very weak responses are expected. Here we adopt a direct approach based on
the definition of solid angle, i.e., the area subtended by the linear elements on a unit sphere
(cf. Fig. 4a). In Fig. 4a,

_
AB,

_
BC,

_
CD,

_
DE and

_
EA are the diametral or geodesic arcs

formed by the intersection of the unit sphere with the linear elements surrounding node
point O′, N is an arbitrary point on the sphere contained within the arcs on the side of the
sphere where the area is measured. Here we chooseN as the intersection point between the
sphere and the normal direction calculated from the local surface-fitting scheme described
earlier.

_
AN,

_
BN, etc. are geodesic arcs on the unit sphere linkingN to the pointsA, B,

respectively. Then the solid angle subtended by the linear elements aroundO′ is just the
sum of the areas of the spherical trianglesANB, BNC, etc. The formula to calculate the area
of a spherical triangle is derived in Appendix A.
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TABLE I

Maximum Errors Associated with the Computed Unit

Normals as a Function of the Number of Nodes Used

Number of nodes Maximum error (in degrees)

162 12.1
362 8.2
642 6.2

1002 4.9

3. RESULTS AND DISCUSSIONS

The computation was performed on a single-processor Silicon Graphics Power Chal-
lenger and a Cray J916 System. To maximize the efficiency, we used a nonuniform mesh on
the free surface with a large number of elements concentrated in the regions immediately
above the bubbles where a fine resolution is needed.

First we consider the convergence of the new model under mesh refinement. When there
are no solid structures and free surface present in the fluid region, an initially spherical
bubble periodically undergoes expansion and collapse motion, which can be described by
the Rayleigh–Plesset equation and remains spherical in shape throughout its lifetime. We
first test the accuracy and convergence of the surface-fitting scheme introduced in Section 2.1
by comparing the surface normals on the spherical bubble computed from our interpolation
scheme with the analytical results. The maximum deviation of the computed normals (in
terms of degrees) is tabulated in Table I for various resolutions. As can be seen in this table,
the maximum deviation is brought down steadily as the mesh is refined and with a moderate
number of nodes (642) being used, the computed normal directions are no more than 6◦

away from the true normal. The convergence of the interpolation scheme is thus verified.
Since the bubble remains spherical in shape throughout its lifetime, we can calculate its

radius by computing its volume. Figure 5 shows the bubble radius as a function of time
obtained from the 3D code with different resolutions and from the solution of the Rayleigh–
Plesset equation using the fourth-order Runge–Kutta method. The numerical errors in the
maximum bubble radius, which is 1 according to analytical solution, are tabulated in Table II.
It is obvious from Fig. 5 and Table II that as the mesh is refined, the 3D solution converges
quickly to the solution of the Rayleigh–Plesset equation; both the maximum bubble radius
and the oscillation period are well predicted by the 3D model with no more than 1% error.

TABLE II

Numerical Errors Associated with the

Computed Maximum Bubble Radius as

a Function of the Number of Nodes Used

Number of nodes Errors (%)

162 0.65
252 0.49
362 0.40
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FIG. 5. Bubble radius as a function of time calculated from the new 3D model with 162 (dash-dotted line),
252 (circles), 362 (dash line) nodes on the bubble surface, and from the Rayleigh–Plesset equation (solid line).

Next we compare the results from the 3D code with those from the axisymmetric code
developed by Wanget al. [14] for the case of a bubble initiated at one maximum radius
below a free surface. Altogether 492 nodes were placed on the bubble surface and 1225 on
the free surface. So there are roughly 43 nodes on a plane through the center of the bubble in
the 3D run, compared to 101 nodes used in the axisymmetric code of Wanget al. For brevity
only results near the final stage of the collapse phase are illustrated; see Fig. 6. Owing to
the very large velocity of the reentrant jet at this point of the evolution, the time marching
process slows to a virtual standstill because of the small time steps that must be maintained
to ensure numerical stability. During the computation, we observe that the bubble calculated
from the 3D code consistently evolves faster than its axisymmetric counterpart. This has
resulted in a smaller bubble at the last stage of the collapse phase than that predicted by
the axisymmetric model. This discrepancy might have resulted from the smoothing that
has usually been applied in axisymmetric codes [2]. Also the free-surface hump calculated
from the 3D code is 3% lower than that predicted by the axisymmetric code. On the whole,
the bubble and the free-surface profiles, as well as the characteristics of the Bjerknes jet are
all well predicted by the current 3D model, suggesting that the local interpolation scheme
adopted here has worked well.

For further comparative testing, the configuration was simulated where a bubble is placed
at a very large distance(d = 5, 10, 20 maximum bubble radius) from a solid wall. In this
case, one would expect that the bubble motion should increasingly resemble that of the
Rayleigh bubble at least during the expansion phase, and thus, the total expansion time
should approach 0.915, the half period of a Rayleigh bubble. The total expansion time
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FIG. 6. Comparison of the bubble and free surface shapes forγ = 1 andδ = 0 at t = 1.4206 calculated from
our 3D code (circles) and an axisymetric code (solid lines).

calculated from the current 3D code is virtually indistinguishable from this value ford = 10
and 20, but the time obtained from the axisymmetric code is still 3.3%, 3%, and 0.4% larger
than it for d = 5, 10, 20, respectively. In other words, the results from the axisymmetric
model converge much slower than those from the 3D code. In the axisymmetric model of
Wanget al. (as well as other axisymmetric models), artificial smoothing is indispensable
in order to damp out the numerical instability, and this may have slowed down the bubble
motion. On the other hand, no smoothing is required in the curent 3D model.

Adding a horizontal bottom below the bubble will affect the process, especially during the
collapse phase, as noted by Wanget al. [14]. Note that the bottom needs not be discretized
if a modified Green’s function is used that takes into consideration of the reflected image
of the source point. In Fig. 7a a comparison is made of the 3D and axisymmetric codes
towards the final stage of bubbles collapse in a shallow water case. In this case, 642 nodes
were placed on the bubble surface and 1521 on the free surface. The results from the two
models again exhibit reasonable agreement although the bubble calculated from the 3D
code is again a little smaller. The axisymmetric code virtually stopped at this time level
t = 1.4623, but the 3D code was able to go further in time. The final sequence (Fig. 7b)
shows the Bjerknes jet in its continued downward projection as a broad bulbous jet.

Having gained confidence on the performance of the new 3D code, we next proceed to
consider a fully 3D case in which two identical bubbles are generated at the same horizontal
level below a free surface. In the computation, we placed 492 nodes on each of the two
bubbles and 1161 nodes on the free surface. The evolution of the bubbles and free surface
is shown in Fig. 8. For this case, the bubbles eventually produce two spectacular spikes
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FIG. 7. Profile of the bubble and free surface in a shallow water calculated from our 3D code (circles) and an
axisymetric code (solid lines), withγ = 1 andδ = 0. The total depth is two maximum bubble radius: (a)t = 1.4623;
(b) t = 1.5454.
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on the free surface. The spikes are bridged by a broad valley elevated from the initially
undisturbed free surface between the spikes. Steep slopes join the spikes to the quiescent
plain of the far field. The Bjerknes jet which is formed at the beginning of the collapse
phase moves obliquely downwards due to the combined effects of the free surface and the
opposing bubble (or equivalently a solid wall placed at the symmetry plane). Depending on
the relative magnitude of the repelling force from the free surface and the attraction force
from the symmetry plane, different parts of the jet move in different directions: the part
close to the symmetry plane moves towards it, whereas the part away from the symmetry
plane moves mainly downwards. In the case presented here, the repelling force from the
free surface seems to drive the jet stronger so that the jet penetrates the bubble at a point
away from the symmetry plane.

No symmetry plane can be found in our next 3D example, in which two bubbles of
different initial sizes are released at different depths below a free surface. The simulation
was carried out with same amount of nodes being used on each of the two bubbles and
the free surface as the in previous case. As can be seen in Fig. 9, the Bjerknes jet is only
formed on the smaller bubble which is seeded nearer to the free surface, and above this
bubble a big hump is raised on the free surface with a gentle slope trailing it on the side of
the bigger bubble, a remnant of the other hump that would be present were it placed at a
smaller distance from the free surface. The bigger bubble is still growing when the reentrant
jet impacts the opposite wall of the smaller bubble and up to that point no reentrant jet is
formed on the bigger bubble. This is not unexpected since the lifetime of a Rayleigh bubble
is proportional to its maximum radius and the jetting only occurs near the end of the
collapse phase. The formed jet is directed mainly downwards with a slight tilt towards the
bigger bubble, a phenomenon also expected due to the attraction force from the bigger
bubble.

4. CONCLUDING REMARKS

A new method to compute the material velocity on 3D bubbles and a free surface is
proposed. The solid angle on the free surface is calculated by a direct method. The new
procedure offers advantages over some of the existing 3D models. Our results compare
favorably with corresponding results from the 1D Rayleigh–Plesset equation and an axi-
symmetric model. The 3D model has also been applied to some fully 3D cases involving
the interactions of two bubbles and a free surface.

APPENDIX A: AREA OF A SPHERICAL TRIANGLE

It is convenient to adopt a local Cartesian coordinate system(x′, y′, z′) (cf. Fig. 4b) and
a spherical co-ordinate system(r, θ, ϕ) such that pointN is the north pole and the arcs

_
NB

and
_
NC are part of the longitude. The radius of the sphere is one. Referring to Fig. 4b, we

then have the area of the spherical triangleNBC

S =
∫ θ0

0
dθ

∫ ϕ0(θ)

0
sinϕ dϕ = θ0 −

∫ θ0

0
cosϕ0(θ) dθ, (A1)

whereϕ = ϕ0(θ) represents the latitude of the arc
_
BC, which is the intersection between the
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planeO′BC

 x′

y′

z′

 =

 x′
B

y′
B

z′
B

 s +

 x′
C

y′
C

z′
C

 t, (A2)

and the sphere

x′ = cosθ sinϕ,

y′ = sinθ sinϕ,

z′ = cosϕ,

(A3)

with 0 ≤ θ < 2π and 0≤ ϕ ≤ π . From (A2) and (A3) we obtain

cotϕ0(θ) = z′
B(y′

C cosθ − x′
C sinθ) + z′

C(x′
B sinθ − y′

B cosθ)

x′
B y′

C − x′
C y′

B

, (A4)

and thus the integrand in (A1) can be obtained as

cosϕ0(θ) = cotϕ0(θ)√
1 + cot2 ϕ0(θ)

. (A5)

Although the integral in (A1) can be written in terms of elliptic integrals, we compute it via
numerical means.

Since all the coordinates used here are local ones and pointsN, B, andC are not the
original nodes, we also show how they can be linked to the original Cartesian coordinates of
the original nodesB′ andC′. From (A3), we only need to find the local spherical coordinates
θC(= θ0), ϕB andϕC (θB = 0). Referring to Figs. 4a, b, we have

cosϕB = O′B0 · O′N0 = O′B′0 · O′N0, (A6)

cosϕC = O′C0 · O′N0 = O′C′0 · O′N0, (A7)

where the superscript “0” denotes the unit vector. The longitude ofC can be calculated by
noting that the dot productO′B′0 ·O′C′0 is invariant under the change of coordinate system.
Therefore, we have

sinϕB sinϕC cosθC + cosϕB cosϕC = O′B′0 · O′C′0 (A8)

and, hence,

cosθC = O′B′0 · O′C′0 − cosϕB cosϕC

sinϕB sinϕC
. (A9)

OnceθC, ϕB, andϕC are found,(x′
B, y′

B, z′
B) and(x′

C, y′
C, z′

C) can be found from (A3). Note
that the coordinates of the pointN are immaterial once the normal vectorO′N0 is found
from the local surface interpolation scheme.
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