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A new boundary element model for simulating the interaction of one or more
bubbles and a free surface is described. An important feature of this model is the
utilization of a nine-noded Lagrangian interpolation for the computation of surface
characteristics and material velocity. Solid angles on the free surface are computed
viaadirectapproach, as opposed to the indirect approach usually employed for closed
surfaces. The evolution of the bubble is followed until the point before the reentrant jet
impacts on the opposite wall of the bubble. The results of the 3D code are compared
against those of a one-dimensional Rayleigh—Plesset model and an axisymmetric
code. New results are presented for the interaction of two bubbles and a free surface,
where fully three-dimensional features are expected.1998 Academic Press

Key Wordsintegral equations; potential theory.

1. INTRODUCTION

In the area of bubbles dynamics, which has important applications in a number of ¢
neering fields such as cavitation and underwater explosions, the most successful apj
so far is the boundary element method (BEM) based on the Green’s direct represen
[11], coupled with some time-stepping scheme. One of the key issues in the implement
of this direct formulation is the accurate determination of the material velocity of the
faces, following the solution of the boundary-integral equation. The problem is prese
by the nonsmooth nature of the discretized surface, which entails the use of a local or ¢
surface interpolation scheme to define the normal direction and tangential plane. Pre
works on 3D bubble dynamics can be reviewed in this light. Harris [1] used an avera
of linear approximations on the surface elements. But as noted by Bta&k[2], this
algorithm suffers from the nonconvergence problem under the mesh refinement. Ch
et al.[3, 4] used quadratic polynomials to fit the surface locally, but his method fails
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certain arrangements of the nodes such as a sphere for which the coefficient matrix i
of full rank (cf. [2]). Following this line, Blakeet al.[2] proposed a number of local inter-
polation functions, one of which, the radial basis functions, was claimed to be univers:
applicable. However, even for this type of shape functions, the local interpolating surfa
has the form ok = f (X, y), where(x, y, z) are the coordinates of a Cartesian frame. Fo
certain points, when the bubble surface is parallel or nearly parallel ipdkis, this would
render the mapping singular or nearly singular. To overcome this problem, the Carte:
frame would have to be reorientated to keep the interpolating map locally diffeomorpt
This may be cumbersome, especially in some complicated cases involving the interac
of multiple bubbles, structures, and free surfaces where one does notkpioari when
and which part of the moving surfaces would become parallel ta-#inds. In this regard,
Zinchenkoet al. [5] utilized a local Cartesian frame, obtained from an iterative methoc
with the z-axis pointing in the normal direction. A least-square method was then used
fit the local surface with quadratic functions. This method, however, becomes less accl
when the number of neighboring nodes far exceeds 4. Other 3D studies include thos
Wilkerson [6], Chahine [7], Harris [8], Blake and Tong [9] and Cletral. [10].

An alternative scheme of surface interpolation is employed in this paper to compute
material velocity of the bubble surface. Local interpolation is carried out via the sha
functions of a 9-noded Lagrangian element. Such element has been used by Bre
et al. [11] and others in the context of other BEM applications. The interpolant is trivaria
in nature and may be applied in a uniform fashion to any local surface patch regardles
the orientation of the latter to the global axes. Moreover, with this interpolation algorithi
we are also able to obtain the material velocity (all its Cartesian components) of the surf
directly, instead of calculating its normal and tangential component separately, as prev
authors have done. The convergence of the algorithm is verified with a bubble of sphel
symmetry.

Then we incorporate this algorithm into a 3D BEM code to study the interaction
bubbles and a free surface. We also propose an effective direct procedure for compt
the nodal solid angles on the free surface. For axisymmetric cases, our results com
favorably with those from an axisymmetric model. Finally, we present the results of tv
cases in which 3D effects are dominant. For brevity, only the results for cavitation bubk
are presented in this paper although the extension of the current model to gas-filled buk
is straightforward.

2. MATHEMATICAL FORMULATION

The most fundamental assumption used here is that the fluid is inviscid and incompr
ible and the induced motion irrotational. Therefore a potential function vy, z) exists
in the region occupied by the fluid, which is bounded by some bubbles and a free ¢
face. A Cartesian co-ordinate syst@wryzis used with théOxyplane coinciding with the
undisturbed free surface. Then the Green’s second identity reads

IG(P.Q  3$(Q)
inQ  anQ

c<P>¢<P>+/S[¢<Q> G(P. Q) |dS(Q) =0, )

whereP = (x, v, 2) is the control pointQ = (X, ¥, Z) is the integration poinG (P, Q) =
|P Q| lis the free space Green’s functiaiP) is a geometrical parameter associated wit
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the solid angle (which is the conventional internal angle in 2D cagrds)the unit normal
pointing out of the fluid region, an8 is the sum of all boundaries which are discretize
into triangular elements. Linear interpolation is used for the potential function and
normal derivative (Brebbiat al. [11]). The discretization scheme on the initially spherice
bubbles and the quadrature used for the integration of the surface integral can be fou
Wilkerson [6].

For cavitation bubbles, the evolution equations are

Dr

R v/ 2

Bt b, 2)

D 1

D—(f = §|V¢|2 — gzon the free surfage ©))

D o — 1

D_(f = P = Pe + E|V¢>|2 — g(z— y’) on a bubble surface (4)
P

where the terms on the left-hand side are material derivativegx, vy, z) is the position
vector, V is the gradient operatog is the gravitational acceleratiom, is the constant
pressure inside the bubble. The center of the spherical bubble at inception is on the |
z=1y’ andpy is the ambient pressure on this plane. In addition, a boundary condition
be prescribed in the far field:

¢ —>0, r=/x2+y>+22 - 0. (5)

We then proceed to nondimensionalize variables with the length scale Bgi{maxi-
mum radius of one of the bubbles) and the time scale bBiRg 0/(Ps — Pc)- The non-
dimensionalized Bernoulli equations then become

Dy 1

Dt — §|V¢>|2 — 8%z on the free surface (6)
D¢ 1 2 o2
ot = 1+ §|V¢| —38%(z—y) onthe bubble surface @)

with 8 = [pg Rn/(Pss — Pc)] 2 being the buoyancy parameter. We have neglected the surf
tension effects in the above formulation for the sake of simplicity. Bletkal. [15] have
noted that for large bubbles (millimeter or larger), the surface tension effects are gene
insignificant over much of the bubble’s lifetime. For very small bubbles, surface tens
effects can be significant and in this case, the above formulation should be modifie
accommodate the effects if necessary.

The initial conditions are derived by integrating the Rayleigh—Plesset equation from
time of inception to the time when the bubble growth is arrested. For cavitation bubb
the initial value of the potential on the bubble, whose radius is assumed-lﬂgdn‘ethe
maximum radius, is given by (cf. [16])

b(to) = —2.58 atty = 0.0015527 ®)

2.1. Calculation of Material Velocity

It can be seen from (2) to (4) that the material velocity is needed to advance the solu
As stated in Section 1, a number of local interpolation schemes have been propose
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FIG. 1. Nine-noded Lagrangian element and the local curvilinear system).

none of them are fully satisfactory. Here we make use of the interpolation functions use
the nine-noded Lagrangian element (Brelstial [11]). Referring to Fig. 1, the quadratic
surface that passes through all the nine nodes and the interpolation functions assoc
with each node are given in terms of the curvilinear coordinates)(as

9
Z firi, )
i—1

9

r

u= fi Ui, (10)
i=1
1
fi = 4_10(6 —D1(r — 1), (12)
Q:%a—a%ur—n, (12)
f3 = %a(o +Dt(r — D), (13)
fa = %o(o - 11 -1, (14)
fs=(1—0d)1—1?), (15)
mzéua+nu—rﬁ (16)
f; = %o(c —Dr(t +1), (17)
fg = %(1 —od)t(r + 1), (18)
fg = %a(o +Dr(r + 1), (29)

wherer andr; are position vectors, is any scalar function defined locally. It can be
verified thatf; (j) =6;; (1 <1, j < 9) with §; being the Kronecker delta, whejedenotes
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the j-node, and thaEig:l fi = 1, which means that there is no interpolation erronfpif
u is a linear function ok, y, z, and for the fitted surface, if all the nine nodes are coplan:
With the scheme, a local curvilinear frame is automatically conferred to the nodal po
in question via the standard element. Therefore no explicit construction or selectiol
reference frame for interpolation is required. It should also be noted that the nine n
need not be distinct.

Suppose that the velocity at the central node 5 is required. Then we have the relatior
the derivatives along two tangential directions and the normal direction,

UX +vYs + wZs = %
ux. +vy: +wz, =52 % ato =7 =0, (20)

uny + vny + wn; = %

whereu, v, andw are the Cartesian components of the velocity vector. The coefficie
(X Yor Zo) = 3(X6 — Xa. Yo — Ya. 26 — 24) = 3AB, (X, Y, Z:) = 3(Xs — X2, Y8 — Y2, 28 —
2,) = 1CD, and ¢ = (¢s — $4)/2, 3¢ = (¢s — $2)/2 are the velocities along the direc-
tion o andrt; d¢/an is obtained from the solution of the boundary integral equation, a
the normal vecton =+AB x CD (the sign is chosen such thatis outward normal),
(nx, Ny, nz) =n/|n|. Solving Egs. (20) gives the material velocity vec{ar v, w) of the
surface directly. Therefore, unlike previous models (e.g., Bétled [2]), where the normal
and tangential velocities were calculated separately with the tangential velocity being c
puted by further assumptions and approximations, our method allows the three compo
of the material velocity to be computed simultaneously in a consistent and unambigt
fashion. It can be shown that the determinant of the coefficient mattixrig/4, and thus,
the linear system has a solutionif] # 0.

Depending on the location of a node on the surface, there may be five or six elen
surrounding the node, and thus lumping or addition of nodes is frequently necessary. T
two situations are illustrated in Fig. 2, together with our arrangement of the Lagrang
nodes 1-9. The values of the potential function at the added Lagrangian nodes are fou
linear interpolation, which is consistent with the linear interpolation used in each elem
Node lumping or element degeneration is an accepted practice for functional interpolz
[17]. It can produce singularities for the first derivatives at the lumped nodes, but
interpolant is first-order smooth away from the degenerated nodes. Since the surface
in question is the central node 5, which is never lumped with other nodes, a locally sm
and regular surface is expected around this node.

While element degeneration may sometimes have adverse effect on accuracy, it
not, however, decrease the fornmtler of accuracyof the interpolants, which remains
second-order. Therefore, grid convergence to the solution is not affected by lumpin
nodes. Interpolation inaccuracy may also arise when the mesh around the central nc
highly distorted. But this is true of all methods, since the results of a procedure may ¢
be as accurate as the regularity of data allows. Loss of accuracy due to mesh disto
however, may be rectified, if necessary, by suitable mesh refinement.

Since the value of the potential function within each element is defined based ¢
linear interpolation of its nodal values, first-order convergence for the computed veloci
is therefore expected. While the linear interpolationpoippears to be adequate for the
present study, the nine-noded Lagrangian interpolant may also be extended to the pot
function in the usual isoparametric manner.
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FIG. 2. Two outlines of the local nodes used in the local interpolation scheme and the designated num
corresponding to a Lagrangian element: “0,” original nodes; &dded Lagrangian nodes. The nodes may not be
coplanar.

2.2. Time Stepping

We adopt a forward-difference scheme for the time stepping. The time step, howe
needs to be carefully chosen to curb the instability and truncation errors. Unlike axisy
metric cases where the sawtooth instability is commonly present, the 3D time stepping
found to be quite stable. Only when the jet is fully developed and comes very close to
opposite wall of the bubble did we encounter some numerical instability.

Stability is not the only concern in a numerical scheme; the time step must be carefi
chosen such that the truncation errors will be kept small. Gibson and Blake [12] propo
that the time step be chosen in such a way that the maximum change of the pgtémtial
each time step is restricted by a constagt Here we use a criterion slightly different from
that of Chahine and Duraiswami [13] that the maximum change of the length of each s
of the triangular elements is restricted by certain percentdge4% in this paper).

To validate the new criterion, we first compare the performance of the two aforementiot
criteriato choose the time step. Shown in Fig. 3 are the results for the interaction betweer
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FIG. 3. Comparison of the bubble and free surface shapeg fod ands =0 att = 1.4206 calculated from
our method of choosing time step with a tolerarmce 4% (dash lines), from Gibson and Blake’s method with
A¢ =0.04 (circles), and from an axisymmetric model in Wat@l. (solid lines).

bubble and a free surface. It is seen that the final results, including the jet configuratior
the free-surface hump, are of similar accuracy and compare well with the results gene
from the axisymmetric code of Wargj al. [14]. But with the new criterion 5% CPU time
is saved. Although the saving in this case is only marginal, our test run for the interac
between a bubble and a solid wall indicates that more than 50% CPU time is saved
the new criterion. The reason for this is that, for the latter case, the time steps calcu
from the new criterion are unusually large when the bubble grows closer to its maxin
volume (with small material velocities); on the other hand, in the case of a bubble ar
free surface, the motion on the free surface has significantly reduced the time steps
the bubble volume is close to its maximum. The saving of CPU time is greatly appreci
since for cases involving multiple bubbles and a free surface the CPU time may run u
several days on a Cray J916 computer system because of the large number of nodes in
in the computation.

2.3. Calculation of Solid Angles on the Free Surface

When a free surface is present, we encounter another difficulty, i.e. the calculation o
solid anglec(P). For a closed surface, one can always calculate it via other entries of
influence matrix (cf. Brebbiat al. [11]). But the free surface is not closed. Of course, or
way to circumvent this hurdle is to add some artificial surfaces to the free surface to re
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FIG. 4. (a) The part of a sphere contained in a corner. (b) A spherical triangle.

it a closed surface. But we found that in order to maintain a reasonable accuracy the
of the elements on the free surface and the artificial surfaces must be kept small so
the numerical integration will not introduce large errors. This will be very uneconomic
in terms of computational time, and we do not wish to waste a lot of elements in the
field where very weak responses are expected. Here we adopt a direct approach bas
the definition of solid angle i. e, the area subtended by the linear elements on a unit sp
(cf. Fig. 4a). In Fig. 4a,AB BC CD DE and EA are the diametral or geodesic arcs
formed by the intersection of the unit sphere with the linear elements surrounding n
point O’, N is an arbitrary point on the sphere contained within the arcs on the side of
sphere where the area is measured. Here we chdé@szthe intersection point between the
sphere and the normal direction calculated from the local surface-fitting scheme descr
earlier. AN BN etc. are geodesic arcs on the unit sphere linkih¢p the pointsA, B,
respectively. Then the solid angle subtended by the linear elements amusgust the
sum of the areas of the spherical triangd¢B, BNC, etc. The formula to calculate the area
of a spherical triangle is derived in Appendix A.
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TABLE |
Maximum Errors Associated with the Computed Unit
Normals as a Function of the Number of Nodes Used

Number of nodes Maximum error (in degrees)
162 12.1
362 8.2
642 6.2
1002 4.9

3. RESULTS AND DISCUSSIONS

The computation was performed on a single-processor Silicon Graphics Power C
lenger and a Cray J916 System. To maximize the efficiency, we used a nonuniform me:
the free surface with a large number of elements concentrated in the regions immedi
above the bubbles where a fine resolution is needed.

First we consider the convergence of the new model under mesh refinement. When
are no solid structures and free surface present in the fluid region, an initially sphe
bubble periodically undergoes expansion and collapse motion, which can be describe
the Rayleigh—Plesset equation and remains spherical in shape throughout its lifetime
firsttestthe accuracy and convergence of the surface-fitting scheme introduced in Sectic
by comparing the surface normals on the spherical bubble computed from our interpolz
scheme with the analytical results. The maximum deviation of the computed normals
terms of degrees) is tabulated in Table | for various resolutions. As can be seenin this t
the maximum deviation is brought down steadily as the mesh is refined and with a modg
number of nodes (642) being used, the computed normal directions are no moré th:
away from the true normal. The convergence of the interpolation scheme is thus verifi

Since the bubble remains spherical in shape throughout its lifetime, we can calculat
radius by computing its volume. Figure 5 shows the bubble radius as a function of t
obtained from the 3D code with different resolutions and from the solution of the Raylei
Plesset equation using the fourth-order Runge—Kutta method. The numerical errors i
maximum bubble radius, which is 1 according to analytical solution, are tabulated in Tabl
Itis obvious from Fig. 5 and Table Il that as the mesh is refined, the 3D solution convel
quickly to the solution of the Rayleigh—Plesset equation; both the maximum bubble ra
and the oscillation period are well predicted by the 3D model with no more than 1% er

TABLE Il
Numerical Errors Associated with the
Computed Maximum Bubble Radius as
a Function of the Number of Nodes Used

Number of nodes Errors (%)
162 0.65
252 0.49

362 0.40
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FIG. 5. Bubble radius as a function of time calculated from the new 3D model with 162 (dash-dotted lin
252 (circles), 362 (dash line) nodes on the bubble surface, and from the Rayleigh—Plesset equation (solid lir

Next we compare the results from the 3D code with those from the axisymmetric cc
developed by Wangt al. [14] for the case of a bubble initiated at one maximum radiu
below a free surface. Altogether 492 nodes were placed on the bubble surface and 122
the free surface. So there are roughly 43 nodes on a plane through the center of the bubl
the 3D run, compared to 101 nodes used in the axisymmetric code of&Vah&or brevity
only results near the final stage of the collapse phase are illustrated; see Fig. 6. Owir
the very large velocity of the reentrant jet at this point of the evolution, the time marchil
process slows to a virtual standstill because of the small time steps that must be mainta
to ensure numerical stability. During the computation, we observe that the bubble calculz
from the 3D code consistently evolves faster than its axisymmetric counterpart. This
resulted in a smaller bubble at the last stage of the collapse phase than that predicte
the axisymmetric model. This discrepancy might have resulted from the smoothing t
has usually been applied in axisymmetric codes [2]. Also the free-surface hump calcul
from the 3D code is 3% lower than that predicted by the axisymmetric code. On the whc
the bubble and the free-surface profiles, as well as the characteristics of the Bjerknes je
all well predicted by the current 3D model, suggesting that the local interpolation sche
adopted here has worked well.

For further comparative testing, the configuration was simulated where a bubble is pla
at a very large distana@ =5, 10, 20 maximum bubble radius) from a solid wall. In this
case, one would expect that the bubble motion should increasingly resemble that of
Rayleigh bubble at least during the expansion phase, and thus, the total expansion
should approach 0.915, the half period of a Rayleigh bubble. The total expansion ti
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FIG. 6. Comparison of the bubble and free surface shapeg fol ands =0 att = 1.4206 calculated from
our 3D code (circles) and an axisymetric code (solid lines).

calculated from the current 3D code is virtually indistinguishable from this valug$o1 0
and 20, but the time obtained from the axisymmetric code is still 3.3%, 3%, and 0.4% la
than it ford =5, 10, 20, respectively. In other words, the results from the axisymmet
model converge much slower than those from the 3D code. In the axisymmetric mod
Wanget al. (as well as other axisymmetric models), artificial smoothing is indispensa
in order to damp out the numerical instability, and this may have slowed down the bul
motion. On the other hand, no smoothing is required in the curent 3D model.

Adding a horizontal bottom below the bubble will affect the process, especially during
collapse phase, as noted by Waei@l. [14]. Note that the bottom needs not be discretize
if a modified Green'’s function is used that takes into consideration of the reflected i
of the source point. In Fig. 7a a comparison is made of the 3D and axisymmetric cc
towards the final stage of bubbles collapse in a shallow water case. In this case, 642 1
were placed on the bubble surface and 1521 on the free surface. The results from th
models again exhibit reasonable agreement although the bubble calculated from th
code is again a little smaller. The axisymmetric code virtually stopped at this time le
t =1.4623, but the 3D code was able to go further in time. The final sequence (Fig.
shows the Bjerknes jet in its continued downward projection as a broad bulbous jet.

Having gained confidence on the performance of the new 3D code, we next procee
consider a fully 3D case in which two identical bubbles are generated at the same horiz
level below a free surface. In the computation, we placed 492 nodes on each of the
bubbles and 1161 nodes on the free surface. The evolution of the bubbles and free s
is shown in Fig. 8. For this case, the bubbles eventually produce two spectacular s
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FIG. 7. Profile of the bubble and free surface in a shallow water calculated from our 3D code (circles) and
axisymetric code (solid lines), with= 1 ands = 0. The total depth is two maximum bubble radius1(&)1.4623;
(b)t =1.5454.
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FIG. 8—Continued
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on the free surface. The spikes are bridged by a broad valley elevated from the initi
undisturbed free surface between the spikes. Steep slopes join the spikes to the quie
plain of the far field. The Bjerknes jet which is formed at the beginning of the collap:
phase moves obliquely downwards due to the combined effects of the free surface an
opposing bubble (or equivalently a solid wall placed at the symmetry plane). Depending
the relative magnitude of the repelling force from the free surface and the attraction fo
from the symmetry plane, different parts of the jet move in different directions: the p:
close to the symmetry plane moves towards it, whereas the part away from the symm
plane moves mainly downwards. In the case presented here, the repelling force from
free surface seems to drive the jet stronger so that the jet penetrates the bubble at a
away from the symmetry plane.

No symmetry plane can be found in our next 3D example, in which two bubbles
different initial sizes are released at different depths below a free surface. The simula
was carried out with same amount of nodes being used on each of the two bubbles
the free surface as the in previous case. As can be seen in Fig. 9, the Bjerknes jet is
formed on the smaller bubble which is seeded nearer to the free surface, and above
bubble a big hump is raised on the free surface with a gentle slope trailing it on the sid
the bigger bubble, a remnant of the other hump that would be present were it placed
smaller distance from the free surface. The bigger bubble is still growing when the reent
jet impacts the opposite wall of the smaller bubble and up to that point no reentrant je
formed on the bigger bubble. This is not unexpected since the lifetime of a Rayleigh bub
is proportional to its maximum radius and the jetting only occurs near the end of t
collapse phase. The formed jet is directed mainly downwards with a slight tilt towards
bigger bubble, a phenomenon also expected due to the attraction force from the bi
bubble.

4. CONCLUDING REMARKS

A new method to compute the material velocity on 3D bubbles and a free surface
proposed. The solid angle on the free surface is calculated by a direct method. The
procedure offers advantages over some of the existing 3D models. Our results com
favorably with corresponding results from the 1D Rayleigh—Plesset equation and an
symmetric model. The 3D model has also been applied to some fully 3D cases involv
the interactions of two bubbles and a free surface.

APPENDIX A: AREA OF A SPHERICAL TRIANGLE

It is convenient to adopt a local Cartesian coordinate sysiény’, z) (cf. Fig. 4b) and
a spherical co-ordinate systgm 6, ¢) such that poini is the north pole and the arbi
andNC are part of the longitude. The radius of the sphere is one. Referring to Fig. 4b,
then have the area of the spherical triang®C

to ©o(0) 6o
S= / de/ sing dyp = 6y — / COSyo(0) db, (A1)
0 0 0

wherep = ¢o(0) represents the latitude of the &€, which is the intersection between the
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planeO’'BC
X’ Xg Xc
Y=Y |st|Y |t (A2)
z Zy z
and the sphere
X' = cosf sing,
y' = sinf sing, (A3)

Z = cosyp,
with0 < 0 < 27 and 0< ¢ < &. From (A2) and (A3) we obtain

Z5(Yi €osO — X¢ Sind) + 7 (Xg SiNO — yg cosP)

cotgo(h) = — (A4)
° XgYc — XcV¥B
and thus the integrand in (A1) can be obtained as
cotyp (0
cosgo(6) = #o(®) (A5)

V1+ colgo(6)

Although the integral in (A1) can be written in terms of elliptic integrals, we compute it \
numerical means.

Since all the coordinates used here are local ones and gé¢irlss andC are not the
original nodes, we also show how they can be linked to the original Cartesian coordinat
the original node®’ andC’. From (A3), we only need to find the local spherical coordinate
Oc (= 6), s andec (g = 0). Referring to Figs. 4a, b, we have

COSpp = O/BO i O/NO — O/BIO A O/NO, (A6)
cosgc = O'CY- O'N? = O'C’®. O'N°, (A7)
where the superscript “0” denotes the unit vector. The longitude cdin be calculated by

noting that the dot produ@’B’®- O’C'? is invariant under the change of coordinate syster
Therefore, we have

singg singc cosc + cospg cospc = O'B'?. O'C’° (A8)
and, hence,

O'B'?. O'C’? — cospg cospc

C0Sfc = - -
SiNgg SINgc

(A9)

Oncede, ¢g, andyc are found(xg, Yg, Zg) and(X:, Y¢. Z:) can be found from (A3). Note
that the coordinates of the poiht are immaterial once the normal vectofN® is found
from the local surface interpolation scheme.
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